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Clusters play a key role in many processes, and their
nature has always been of interest to researchers [1, 2].
One example is the catalytic dimerization of ethylene in
the presence of the homogeneous tetrabutoxytitanium–
triethylaluminum Ziegler catalyst. In this system, a
binuclear active center of the catalyst 

 

(L

 

z

 

Ti)

 

2

 

 is required
for the simultaneous activation of two ethylene mole-
cules that are converted into 1-butene [3]. Another
example is the catalytic isomerization of 3,4-dichlo-
robutene to 1,4-dichlorobutene, which takes place in
the coordination sphere of a tetranuclear Fe(III) cluster
[4]. A number of analogous concerted reactions can
also be cited [5]; however, much more examples can be
found among many-electron redox reactions [6].

In many instances, a high catalytic activity of enzymes
is associated with the fact that an active center containing
several transition metal ions serves as a “switch” from one-
electron to many-electron mechanisms [6]. This makes it
possible to perform hindered (the Shaffer principle [7]) and
noncomplementary [8] redox reactions of many-electron
reduction of 

 

N

 

2

 

, O

 

2

 

,

 

 and 

 

CO

 

2

 

 [6] or oxidation of 

 

H

 

2

 

O

 

 [6, 9].
In this work, the kinetics of many-electron redox

processes occurring in the coordination sphere of a
cluster is analyzed.

Let us consider a many-electron process where sev-
eral one-electron acceptors oxidize a substrate mole-
cule (or several molecules) to a final product, for exam-
ple, the four-electron oxidation of water to molecular
oxygen with the one-electron oxidant 

 

A

 

+

 

:

 

4A

 

+

 

 + 2H

 

2

 

O  4A + O

 

2

 

 + 4H

 

+

 

.

 

This reaction has been studied earlier in the presence of
the compounds of Co(III), Ag(II), Fe(III), Ce(IV), and
other metals. In addition to cations, uncharged species,
such as hydroxo complexes, or anions (for example,

 

Mn

 

) can serve as 

 

A

 

+

 

. In terms of formal kinetics
[10], the rate of this polymolecular reaction is
expressed as 

 

w

 

 = 

 

k

 

[A

 

+

 

]

 

4

 

[H

 

2

 

O]

 

2

 

. Even without consider-
ing water taken in a large excess, a collision of four 

 

A

 

+

O4
–

 

species is required for the reaction. However, tetramo-
lecular reactions do not exist because the probability of
such a collision is extremely low [5]. Consequently, the
processes of this kind should be explained in different
way.

When two electron acceptors collide, a relatively
long-lived dimer 

 

(A

 

+

 

)

 

2 

 

can be formed. It has corre-
sponding counter-ions if it is charged. The sequence of
several inelastic collisions results in a cluster (or a
quasi-molecule) containing a required amount of reac-
tants for a concerted process if other necessary condi-
tions (energy and orientation) are met. Thus, we obtain
a “frozen” collisional complex, which plays a key role
in the reaction. The lifetime of this complex can be suf-
ficiently long and it may wait for other conditions to be
met. If such clusters are not formed spontaneously, the
addition of specially synthesized polynuclear com-
plexes makes it possible to catalyze uncomplementary
reactions. 

For the process of water oxidation by 

 

(A

 

+

 

)

 

2

 

 ions
under discussion, the formation of a tetranuclear com-
plex (T) is conceivable. This complex contains water
and undergoes decomposition to release an O

 

2

 

 molecule
and four protons: 

 

(A

 

+

 

)
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⋅

 

 2H

 

2

 

O  A

 

4

 

 + O

 

2

 

 + 4H

 

+

 

. As
a result of rapid exchange with the medium that con-
tains both 

 

A

 

+

 

 and the reduction product A, the inactive
A

 

4

 

 can be converted again into the active 

 

(A

 

+

 

)

 

4

 

 

 

(nano-
electrode equilibrium [9]). To determine the rate of the
process, 

 

(A

 

+

 

)

 

4

 

 should be calculated [9]. If the mononu-
clear species A

 

+

 

 and A are statistically equiprobable
constituents of T, the composition of a tetramer ensem-
ble is described by the ordinary binomial distribution
(the problem of black and white balls [12]) 

 

x

 

m

 

(1 –

 

x

 

)

 

4

 

 

 

–

 

 

 

m

 

, where  is the binomial coefficient and 

 

m

 

, ‡

 

x

 

 = [A

 

+

 

]/([A

 

+

 

]

 

 + [A]), and the fraction of active T is
equal to 

 

x

 

4

 

 (

 

m

 

 = 4)

 

. Thus, because the sum 

 

a

 

 of the oxi-
dized and reduced forms of the oxidant is constant in
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the course of the overall process, the reaction rate is
proportional to the fourth power of [

 

A

 

+

 

]; that is, in this
case, the unimolecular dissociation of tetramers T sim-
ulates a tetramolecular reaction 

 

–

 

d

 

x

 

/d

 

t

 

 = 

 

kx

 

4

 

 [10]. The
tetranuclear cluster 

 

(A

 

+

 

)

 

4

 

 is a “frozen” collisional com-
plex of four 

 

A

 

+

 

 one-electron oxidants.

The binomial distribution in tetramers, imposed by
a “potentiostat” of 

 

A

 

+

 

 ions and A (external equilib-
rium), can be noticeably distorted by disproportion-
ation reactions between different T species (internal
equilibrium). The entire scheme of the equilibria can be
represented as follows (for simplicity, ligands are
everywhere omitted):

Here, only the equilibria of T species with each other
and monomers from the medium are considered with-
out regard for equilibria between different 

 

n

 

-mers (for
example, between T and dimers or trimers). The first
line corresponds to a nanoelectrode [9] (external) equi-
librium of tetramers with the “potentiostat” of compo-
nents of the 

 

A

 

+

 

/A

 

 redox pair. The vertical equilibria are
associated with redox reactions between the tetramers.

To describe the kinetics of the process, the concen-
tration of the active tetramers 

 

(A

 

+

 

)

 

4

 

 should be known.
In the subsequent discussion, it will be more convenient
to deal with phase trajectories rather than integral

A+ Ai
+A4 i– Ai 1+

+ A3 i– A+ +

 

 

A j
+A4 j–– A j

+A4 j– A j
+A4 j–– A j

+A4 j–

Ai 1–
+ A5 i– A j 1+

+ A3 j–+ Ai
+A4 i– A j 1+

+ A3 j–+

curves that describe the changes in [A+] with time.
Recall that a phase trajectory is a mapping of the kine-
matic behavior of an autonomous dynamic system in
the {mdx/dt, x} coordinates [13]. In the case under con-
sideration, the relative rate w/w0 of chemical reaction
and the molar fraction x were chosen as coordinates.

Figure 1 demonstrates the phase trajectories of the
consumption of A+ in the decomposition of T. The
curves were calculated using two balance equations

ax = 4[(A+)4] + 3[(A+)3A] + 2[(A+)2A2] + [A+A3]

and

a(1 – x) = 4[A4] + 3[A3A+] + 2[(A+)2A2] + [A(A+)3]

and three equilibria (with the equilibrium constants Ki, j):
(A+)4 + (A+)2A2  2(A+)3A(K4, 2), (A+)3A + A3A+ 
2(A+)2A2(K3, 1), and A4 + (A+)2A2  2A3A+(K2, 0); in
the balance equations, x = [A+]/([A+] + [A]) is the frac-
tion of the oxidant in the mixture and a = [A+] + [A].
For simplicity, the oxidant and its reduced form are
considered to belong almost completely to T. Other-
wise, the solution is analogous; however, an ensemble
of tetramers is considered with due regard to correction
factors, and the parameter a is only a fraction of the ini-
tial [A+]. In the calculation of curves shown in Fig. 1,
all of the three equilibrium constants Ki, j were taken
equal, except for curve 6, which corresponds to the
binomial distribution of A+ and A over T (in this case,
K4, 2 = K2, 0 = 8/3 and K3, 1 = 9/4 [12]). It is difficult to
distinguish between the dissociation of tetramers at
very low Ki, j from an ordinary unimolecular reaction of
A+ (in Fig. 1, curve 2 with Ki, j = 0.1 and straight line 1
with Ki, j = 0, respectively). This is clear because tet-
ramers behave as independent species whose properties
are unaffected by the reaction products. Phrased sim-
pler, the insertion of the reaction products A into (A+)4
does not damage these reactive species in this particular
case. At very high Ki, j, the dissociation of (A+)4 is also
described by a unimolecular reaction rate law (straight
line 9); however, the process was stopped after the con-
version of a quarter of the oxidant. The reaction did not
proceed to a deeper degree, because 25% of the A species
formed poison the remainder 75% oxidant by uniformly
distributing over tetramers. It is clear that a quarter of the
reactant will be converted only if it completely enters into
the composition of tetramers. However, if the fraction of T
in the reaction mixture is small, a small amount of the
reduced acceptor suffices to deactivate them. Under these
conditions, the conversion will be much lower than 25%
(self-poisoning by a reaction product). The displaying
point will move from the point (1, 1) of the phase plane to
a small distance along the phase trajectory during the
whole reaction time.

For all phase trajectories, dw/dx = 4 at x = 1, i.e., at
the zero conversion; this is indicative of the number of
oxidants in an active cluster (A+)4 equal to 4. The exper-
imental data on water oxidation by the tetramers
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Fig. 1. Phase trajectories of consumption of a one-electron
reactant in the four-electron process performed in the coor-
dination sphere of a tetranuclear cluster. The curves were
calculated for Ki,j equal to (1) 0, (2) 0.1, (3) 0.5, (4) 1, (5) 2,
(7) 4, (8) 10, or (9) 10 000, and (6) for a binomial distribu-
tion. Experimental points correspond to the oxidation of
water by (Mn4+)4 clusters to O2 [9].
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(MnIV+)4 (circles in curve 6) mimics a tetramolecular
reaction although quaternary collisions do not occur.
The fact that the binomial distribution of MnIV+ and
MnIII+ ions is retained in manganese tetramers is asso-
ciated with the circumstance that external equilibria are
attained in this system much more rapidly than internal
equilibria. This is favored in part by the fact that the
oxidant is far from being completely present in tetram-
ers; a considerable amount of manganese is also incor-
porated into dimers [9].

The reactions of dimers (D) can be described simi-
larly. In this case, the two balance equations for ions
(A+)2 and ax = 2[(A+)2] + [AA+] and the sole internal
equilibrium a(1 – x) = 2[A2] + [AA+] are used to deter-
mine the concentration of the active complex (A+)2 +
A2  2AA+(K). Once again, for simplicity, we
assume that almost all A+ ions and A occur in dimers.
Curve 5 in Fig. 2 corresponds to a binomial distribution
of A+ and A in dimers (K = 4). In this case, the kinetic
curve of consumption of the oxidant A+ is described by
the ordinary bimolecular reaction rate law [A+]–1 =
(k/a)t + const up to completion of the reaction. The only
difference is that the observed reaction rate constant is
equal to the rate constant of unimolecular dissociation
of the dimer divided by the initial concentration of the
one-electron oxidant. Only this fact makes it possible to
distinguish a classical bimolecular reaction from clus-
ter catalysis in the case when the concentration of
dimers is extremely low and is described by the qua-
dratic function [(A+)2] = Kd[A+]2, which follows from
the equilibrium A+ + A+  (A+)2. In this case, not
only the kinetic curve of consumption of A+, but also
the initial rates are described by a bimolecular reaction
rate law. However, if [D] is high, the initial rates of the
reactions under consideration are linear rather than
quadratic functions of [A+]0.

At very low values of K, the dissociation of D is ade-
quately described by a rate law of unimolecular reac-
tion (Fig. 2, straight line 1, when K = 0, and the mixed
dimer AA+ is not formed). At very high values of K
(Fig. 2, straight line 8), the kinetics also corresponds to
a unimolecular reaction; however, in this case, the pro-
cess is terminated after the consumption of a half of the
oxidant. As in the case of tetramers, under these condi-
tions, the unimolecular reaction of dimers will termi-
nate well before, if the oxidant is far from being com-
pletely incorporated into the dimers.

For the entire bundle of phase trajectories, the deriva-
tive of the relative rate with respect to the conversion at the
beginning of the process (x = 1) is equal to two, i.e., the
number of oxidizing equivalents in the active D species.

In some cases, the distribution of the acceptor over
dimers is described by the equilibrium constant K = 1,
which results from the equality of the redox potentials
of the pairs (A+)2/AA+ and AA+/A2. Indeed, the equi-
librium (A+)2 + A2  2AA+ is a redox process, the

free Gibbs energy of which is related to the oxidative
potentials of the above pairs by the following simple
expression: ∆G = RTlnK = neF(  – ) = 0 and
K = 1. In this expression, ne is the number of transferred
electrons, and F is the Faraday constant. To obtain the
kinetic curve of acceptor consumption, the concentra-
tion of active dimers should be expressed as a function
of [A+]; next, the rate equation should be integrated in t.
As a result, a kinetic curve is obtained, which is incon-
sistent with either a bimolecular or a unimolecular
reaction. For example, at K = 1, the kinetic curves of
consumption of a one-electron or two-electron oxidant
in the dissociation of D are described by the linear
anamorphosis ϕ = 8k0t + const, where ϕ(x) = x–1{1 +

4(α – β)–1[(α – x)(x – β)]1/2} + 8(α – β)−1 (x –
β)/(α – x)]1/2 + 6ln{(x – β)1/2 + [β(α – x)/α]1/2} –
6lnx{(x – β)1/2 – [β(α – x)/α]1/2}, α = 1.07735, and β =
–0.07735 (see Appendix). Experiments on the decom-
position of (Mn4+)2 are consistent with this relationship
[9]. In this reaction, two two-electron oxidants
(Mn4+/Mn2+) in an active dimer perform the four-elec-
tron oxidation of water.

Points in curve 4 (Fig. 2) are plotted in accordance
with the experimental data published in [14]. Baxen-
dale and Wells [14] explained the consumption of the
acceptor Co3+ in water oxidation by the collective inter-
action between the dimeric (Co3+)2 species and the Co3+

ion (three-electron oxidation of water to the H  radi-
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Fig. 2. Phase trajectories of consumption of the reactant in
the process performed in the coordination sphere of a dimer
complex. The curves were calculated for K equal to (1) 0,
(2) 0.01, (3) 0.25, (4) 1, (5) 4, (6) 8, (7) 40, and (8) 10 000.
Experimental points correspond to the oxidation of water by
Co3+ ions [14].
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cal). Many researchers agreed on this explanation, even
with some uncertainties. However, a good agreement
between the experimental data [14] and curve 4 in
Fig. 2 demonstrates that the two-electron oxidation of
water to H2O2 really occurs (at K = 1) at the rate-limit-
ing step of the process (the derivative of the phase tra-
jectory at x = 1 is indicative of the combined effect of
two acceptors). Thus, the derivative of the phase trajec-
tory at x = 1 corresponds to the number of oxidant
atoms in an active cluster rather than to the number of
transferred electrons.

Figure 3 (straight line 2) shows a linear anamorpho-
sis of the kinetic curve of consumption of Co3+ ions in
the {ϕ, t} coordinates, which was plotted using the
experimental data from [14] (curve 1). It can be seen
that the curve is adequately linearized. For comparison,
the same data were plotted in the {[Co3+]–1/2, t} coordi-
nates (straight line 3) in accordance with the reaction
mechanism suggested by Baxendale and Wells [14]. In
this case, the agreement is not so good, and the devia-
tions of the experimental points from the straight line
indicate that the reaction order is underestimated. In
addition to that, the mechanism proposed by the
authors of [14] is not self-consistent. It is clear from
their data that the initial rates of Co3+ ion reduction (w0)
linearly increase with an increase in [Co3+]0. This con-

tradicts the mechanism proposed in [14] but agrees
with the two-electron oxidation of water in the cluster.
According to the scheme considered above, a linear
growth of w0 with an increase in [Co3+]0 should be
observed under conditions when the solution contains
dimers (Co3+)2 in substantial amounts as stated by the
authors of [14].

If dimers cannot directly interact with each other,
the reactant distribution over D can be considered ordi-
nary binomial. Consequently, we believe that the for-
mal kinetics of oxidant consumption obeys a bimolec-
ular rate law. The reduction of superoxide dismutase in
an excess of H2O2 [15] is an example. This process is
adequately described by a rate law for bimolecular
reaction up to 90% conversion. The linear dependence
of the initial rate of reduction on [Mn3+] indicates that
this is not a classical bimolecular reaction. In addition,
the redox potentials of a number of model dimers were
found to be identical [16]; that is, in the case of the
direct interaction of two D with each other, it should be
expected that K = 1. It is likely that the complex protein
globules of the enzyme interfere with mutual contacts
between manganese-containing prosthetic groups giving
no way of internal equilibria in the ensemble of dimers.

The kinetic method for determining the number of
required donors in an active cluster was applied to the
reaction of nitrogen reduction to ammonia in the homo-
geneous V(II)–di-tert-butylpyrocatechol model mix-
ture [17]. The kinetics of ammonia formation is consis-
tent with the kinetics of an octamolecular reaction,
which is impossible, according to van’t Hoff, –dx/dt =
kx8 [10]. In the calculation of reaction rates, a parallel
reaction of water reduction was taken into account, and
the initial rate of the process was estimated by extrapo-
lation because of the absence of relevant data. Despite
all these rough approximations, the observed reaction
may be considered to be an eight-electron rather than
six-electron process as would be expected from the sto-
ichiometry of the reaction N2 + 6e– + 6H+ = 2NH3. The
reaction kinetics may be considered supporting the view-
point of Bazhenova and Shilov [18], according to which
the six-electron reduction of nitrogen to ammonia is
accompanied by the formation of a hydrogen molecule.
Detailed discussion of nitrogen reduction can be found
in [19].

The following conclusions can be drawn from a the-
oretical analysis of the kinetics of consumption of one-
electron (or two-electron) oxidants (reducing agents) in
many-electron processes:

(1) In many-electron redox reactions that proceed in
the coordination sphere of a polynuclear complex, the
number of oxidants (reducing agents) is equal to the
first derivative of the phase trajectory on the (w, x) coor-
dinates at the very beginning of the process (x = 1).

(2) If a statistically equiprobable binomial distribu-
tion occurs in an ensemble of n-mer clusters, the uni-
molecular dissociation of an n-mer in the cluster catal-
ysis of an uncomplementary process simulates the for-
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Fig.  3. (a) (1) Kinetic curve of consumption of Co3+ ions
and (b) its linear anamorphoses in the (2) {ϕ(x), t} and (3)
{[Co3+]–1/2, t} coordinates. Experimental data were taken
from [14].
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mal kinetics of an n-molecular reaction of oxidant
(reducing agent) dissociation.

In conclusion, a paradoxical fact should be men-
tioned. Van’t Hoff failed to experimentally support his
well-known equation that describes the rate of a poly-
molecular reaction at n ≥ 4, even though repeated
attempts were made [10]. Although the equation was
obtained on the assumption of elastic collisions of the
reactants, it can be supported experimentally for n ≥ 4
only in the case of concerted reactions that occur in the
coordination sphere of polynuclear complexes. It can be
seen that the molecularity according to van’t Hoff can be
at most three, whereas the quasi-molecularity in the
decomposition of a cluster can be eight or even higher.

Thus, the kinetic description of concerted reactions
that proceed in the coordination spheres of clusters
considerably extends the area of application of the for-
mal kinetics.

APPENDIX

Let us denote the molar fraction of A+ by x =
[A+]/([A+] + [A]) = [A+]/a. Then, the molar fraction of
A is equal to (1 – x) = [A]/a. Let us assume that all A+

and the reduced form A enter the composition of
dimers, which are in the following rapidly attained
redox equilibrium (I) with the equilibrium constant K:

(A+)2 + A2  2AA+. (I)

To determine the concentration of the reactive spe-
cies (A+)2, let us write the material balance equations
for A+ ions and A:

ax = 2[(A+)2] + [AA+], (1)

a(1 – x) = 2[A] + [AA+]. (2)

The solution to equations (1) and (2) makes it possible
to express [A+] in terms of the molar fraction x:

For the rate of consumption of A+ expressed in terms of
the molar fraction, we obtain the equation –dx/dt =
k0[1 + 6x – (1 + 12x – 12x2)1/2]/6, where k0 is the rate
constant of the dissociation of (A+)2.

By simplifying and integrating the equation, we
obtain the equality

(3)

The remaining integral can be reduced to an integral of
a rational fraction using the third Euler substitution:
(1 + 12x – 12x2)1/2 = [–12(x – α)(x – β)]1/2 = (x – α)t,
where α = 1.07735 and β = –0.07735 are the roots of
the equation 1 + 12x – 12x2 = 0. The integral can easily
be calculated by changing the variable x = α(t2 +
12β/α)/(t2 + 12), dx = 24α(1 – β/α)(t2 + 12)–2tdt. The
final expression for the linear anamorphosis of the kinetic

A+( )2[ ] a/4( ) K 2x 4 K–( )+{=

– K2 4Kx 1 x–( ) 4 K–( )+[ ] 1/2 } / 4 K–( ).

x 1–– 6 x x 2– 1 12x 12x2–+( )1/2
xd∫+ln+ 8k0t.=

curve at K = 1 has the form ϕ(x) = 8k0t + const, where the
numerical value const = 11.932 and ϕ(x) = {1 + 3.464[(x +
0.07735)(1.07735 – x)]1/2}x–1 + 6.928 (x +
0.07735)/(1.07735 – x)]1/2 + 6ln{(x + 0.07735)1/2 +
[0.0718(1.07735 – x)]1/2}/x{(x + 0.07735)1/2 +
[0.0718(1.07735 – x]1/2}.

This expression is identical to the corresponding
expression in the text.
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